If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+29n-63=0
a = 4; b = 29; c = -63;
Δ = b2-4ac
Δ = 292-4·4·(-63)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-43}{2*4}=\frac{-72}{8} =-9 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+43}{2*4}=\frac{14}{8} =1+3/4 $
| -4(y-5)=-4y+9 | | 17=z-32 | | 4x-x+1/2=38 | | 1/10(x-8)=1=x | | 6-m/4=17 | | -10=p+13 | | 5(-8n-6)=-190 | | t-25=11 | | 9k=6(3k+3) | | 16=a/7-2 | | 3b2+7b–6=0 | | 21-5x=14 | | -8v-27=4(-2v+3 | | 3(3x-8)-3=-81 | | 5p^2-9p-18=0 | | 45-1.50r=21 | | 6s-4=20 | | 21k+3=18k+9 | | x/5+4=15 | | P(x)=−3(x−5)^2+12 | | 1/2x+6=3/2(x+6) | | 6p^2+2p-104=0 | | 16−3p=32 p+5 | | 6a^2-19a+8=0 | | -7(r-7)-r=89 | | 6a^2-19a+14=0 | | x+4-x/2=27 | | 56=4x-12 | | 136=3(2x+8)+8x | | 17y+47=115 | | 2r^2+11r-6=0 | | a/124=75/100 |